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• Durability and Probabilistic Analysis of SOFCs

• Degradation and Wear
• Creep Deformation

• Thermal Cycling

• Slow-crack growth

• Future work

OutlineOutline
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The failure rate of 
complex systems 
can be described 
by the bathtub 
curve 

Failure of systemsFailure of systems

infancy failures

wear/degradation failures

useful life
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bimodal distribution

Failure of systemsFailure of systems
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• Failure is determined by 
the intersection of the 
distributions of loads 
and strengths.

• Failure can be avoided 
by designing 
components so that 
these distributions don’t 
intersect

• The weakest elements 
of the population 
determine the reliability 
of the system.

Failure of systemsFailure of systems
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Failure of systemsFailure of systems
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before after

Failure of systemsFailure of systems
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Failure of systemsFailure of systems

• Creep deformation
• Thermal cycling and thermal aging
• Slow-crack growth

Mechanisms that contribute to wear and degradation
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Creep DeformationCreep Deformation
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Creep DeformationCreep Deformation

• Is creep deformation really an issue for SOFCs?
• Stress relaxation testing provides a rapid means to 

answer that question.
• Beam-shaped test specimens are subjected to 

constant bending strain at high temperature

• The curvature of the beam is monitored before and 
after the test
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Creep DeformationCreep Deformation

• Ni-YSZ 
• 40% final porosity
• 43% Ni (vol. solid phase)
• 1.5” x 0.15” x 0.04”
• curvature determined 

by laser profilometry
• Macor® fixture with 

channels of different 
radii of curvature.

• 50-hr stress relaxation 
test at 800°C in H2 
(4%)-Ar (96%)

45 MPa

30 MPa

15 MPa
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Creep DeformationCreep Deformation

• After stress-relaxation 
testing test specimens 
retained the curvature of 
the fixture channels.

• Therefore, this material 
is prone to creep 
deformation.

• What is the mechanism?
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Nickel dissolutionNickel dissolution

HNO3

• 14 hrs in 75% HNO3
solution

• weight after reduction: 
2.279 g

• weight after Ni removal: 
1.0823 g

• removed Ni (from weight 
loss): 99.4%
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Nickel dissolutionNickel dissolution

40/66% porosity

34/62% porosity

27/**% porosity
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Creep DeformationCreep Deformation

• Stress-relaxation tests of 
porous YSZ scaffold

• 50-hr stress relaxation 
test at 800°C in H2 (4%)-
Ar (96%)

• Material experiences 
minimal stress relaxation

• Nickel is mostly 
responsible for creep 
deformation experienced 
by Ni-YSZ at 800°C.
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Thermal cycling and thermal agingThermal cycling and thermal aging
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Thermal cycling and thermal agingThermal cycling and thermal aging

• H2 (4%)-Ar (96%)
• tubular furnaces
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Thermal cycling and thermal agingThermal cycling and thermal aging

27-bilayer

34-bilayer

40-bilayer
• Ni-YSZ substrate
• 10-µm thick YSZ layer



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Lara-Curzio et al. October 2005.  26 of 36 

Thermal cycling and thermal agingThermal cycling and thermal aging

• residual stresses determined 
in YSZ layer by X-ray 
diffraction

• Curvature measurements by 
laser profilometry
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Thermal cycling and thermal agingThermal cycling and thermal aging

• Microstructural and physical 
characterization in progress

• Aging tests in progress to 
distinguish between thermal 
and cycling effects
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Slow crack growthSlow crack growth
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Slow-crack growthSlow-crack growth

• Slow-crack growth of 
preexisting flaws is 
recognized as a primary 
source of static fatigue 
failure of ceramics.

• Knowledge of crack 
velocities can be used to 
predict the service life of 
ceramic components.
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Fracture toughnessFracture toughness

• fracture toughness and slow-
crack growth determined by 
double-torsion testing
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Slow-crack growthSlow-crack growth Double-torsion test methodDouble-torsion test method

• Ni-YSZ

• 20°C

n ≈ 20 
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Slow-crack growthSlow-crack growth Double-torsion test methodDouble-torsion test method

• Ni-YSZ

• H2(4%)-Ar(96%)

n ≈ 20 n ≈ 13  
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Slow-crack growthSlow-crack growth

Role of microstructure on 
crack growth in Ni-YSZ at 
600°C
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Future WorkFuture Work
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Future WorkFuture Work

Verification of reliability predictions for bi- and tri-layers 
subjected to arbitrary temperature distributions

Probabilistic analysis to predict durability and reliabilityProbabilistic analysis to predict durability and reliability
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Laser FIB

Future WorkFuture Work

Interfacial characterization

YSZ

Ni-YSZ
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• Nickel is responsible for the creep deformation of 
Ni-YSZ at 800°C

• Residual stresses in Ni-YSZ decrease in 
magnitude with number of thermal cycles.

• The fracture toughness of Ni-YSZ decreases with 
both porosity and temperature

• Ni-YSZ exhibits slow-crack growth both at ambient 
and elevated temperatures.  The microstructure 
does play a role on crack propagation

• Thermal and physical properties of materials have 
been determined

SummarySummary


